Can Intensive Early Childhood Intervention Programs Eliminate Income-Based Cognitive and Achievement Gaps?

Greg J. Duncan, U. California Irvine School of Education Aaron J. Sojourner, U. Minnesota Carlson School of Management

> Presented for Human Capital Research Collaborative December 13, 2011

This research is supported by the U.S. Department of Education's Institute of Education Sciences and by the National Institute for Child Health and Human Development.

Research Topic

Question: how much could U.S. income-based cognitive and achievement gaps be closed by early childhood intervention programs? Targeted or universal?

Known: they work for kids from lower-income families => Targeted programs would **reduce** gaps.

Unknown:

- By how much nationally?
- Do they work among kids from higher-income families => Universal program impacts?

Research Approach

Use experiment that included kids from both lowerincome and **higher-income** families, ran through age 3.

Weight this unrepresentative sample to match the ECLS-B national birth cohort on maternal demographics.

Estimate program impacts for each income group.

Estimate fraction of U.S. cognitive and achievement gaps that would be closed at ages 1, 2, 3, 5, and 8 years under universal and targeted intervention programs.

Percent of Cognitive and Achievement Gaps Closed by Universal and Targeted program, by Age of Child

-100

Measuring an income-based gap

Start with a nationally representative sample.

Measure family income at birth. Indicate child from lower-income family with $L_i = 1$.

Measure outcome of interest: Y_i

Empirical model of gap

 $Y_i = \alpha_0 - \alpha_1 L_i + \varepsilon_i$

	No program
Predicted outcome among	α
higher-income (L=0)	Ŭ
Predicted among	$\alpha_0 - \alpha_1$
lower-income (L=1)	0 1
Predicted Gap	α_1

Ideal gap-closing experiment

Start with a nationally representative sample.

Measure family income at birth. Indicate child from lower-income family with $L_i = 1$.

Randomly assign individuals in each income group to treatment, indicated with $T_i = 1$.

Measure outcomes of interest over time: Y_i

Empirical Model of Gap Closing

Income gap $Y_i = \alpha_0 - \alpha_1 L_i + \alpha_2 T_i + \alpha_3 T_i L_i + \varepsilon_i$

Treatment effect among higher-income

How much bigger is treatment among lower-income than higher-income

	No program
	(T=0)
Predicted among higher-income	α_0
(L=0)	
Predicted among Lower-income	α_0 - α_1
(L=1)	
Predicted Gap	α_1

Empirical Model of Gap Closing

Income gap $Y_i = \alpha_0 - \alpha_1 L_i + \alpha_2 T_i + \alpha_3 T_i L_i + \varepsilon_i$

Treatment effect among higher-income

How much bigger is treatment among lower-income than higher-income

	No program	Universal
	(T=0)	(T=1)
Predicted among higher-income	α_0	$\alpha_0 + \alpha_2$
(L=0)		
Predicted among Lower-income	α_0 - α_1	$\alpha_0 - \alpha_1 + \alpha_2 + \alpha_3$
(L=1)		
Predicted Gap	α_1	α_1 - α_3
Portion of gap closed (C _a)		α_3/α_1

Empirical Model of Gap Closing

 $Y_i = \alpha_0 - \alpha_1 L_i + \alpha_2 T_i + \alpha_3 T_i L_i + \varepsilon_i$

	No program	Universal	Targeted
	(T=0)	(T=1)	(T=L)
Predicted among higher-income	α_0	$\alpha_0 + \alpha_2$	α_0
(L=0)			
Predicted among Lower-income	$\alpha_0 - \alpha_1$	$\alpha_0 - \alpha_1 + \alpha_2 + \alpha_3$	$\alpha_0 - \alpha_1 + \alpha_2 + \alpha_3$
(L=1)			
Predicted Gap	α_1	$\alpha_1 - \alpha_3$	$\alpha_1 - \alpha_2 - \alpha_3$
Portion of gap closed (C _a)		α_3/α_1	$(\alpha_2 + \alpha_3)/\alpha_1$

Literature

There are large, growing gaps in academic achievement and IQ between kids of different income/SES (α_1). (Duncan & Magnuson, 2011; Reardon, 2011)

Strong experimental evidence that high-quality early childhood environment can raise achievement, but only from samples selected to be low-income ($\alpha_2 + \alpha_3$). (Karoly, 2001; Heckman, Grunewald & Reynolds, 2006; Bartik, 2011)

Evidence that impacts among higher-income samples (α_2) are small or even negative, but nonexperimental. (Gormley et al, 2008; Bartik et al, 2011; Bernal & Keane, 2010)

The experimental treatment

The Infant Health & Development Program (IHDP) recruited a sample at birth and randomly assigned a treatment. (Brooks-Gunn et al, 1994; McCarton et al, 1997; Gross et al, 1997)

Age 0-1: weekly home visit from staff

Age 1-3: child eligible for child development center (CDC) Free Full-day High-quality, Abecedarian curriculum Free transportation

CDC cost would be about \$24K/year (updates Gross et al to 2006\$). Without transportation or children with disabilities, \$15K/year.

The experimental sample

Rather than strictly income-based, IHDP program selected on a different criteria.

Ethnically and economically diverse but sample only included children born:

- Low-birth weight ($\leq 2.5 \text{ kg} = 5.5 \text{ lbs}$)
- Premature (\leq 37 wks)

In one of 8 research hospitals around country Starting January 7, 1985 until fully enrolled

Experiment gives internal validity, but what about external?

Main concern: how well can the IHDP's sample represent the population of U.S. children?

Approach:

Use only high LBW subsample (2.0 - 2.5 kg). Reweight to match ECLS-B on maternal education, race/ethinicity, and marital status. Check how well average outcomes match.

Use HLBW. Exclude LLBW.

HLBW are closer to normal birth weight.

(Klebanov et al, 1994a; Klebanov et al, 1994b)

LLBW suffer more biological compromise. Intervention effects here may not generalize.

IHDP includes 362 HLBW children. About a third in treatment and two-thirds in control.

IHDP HLBW sample

Variable	Ν	Mean	SD
Age 1 IQ z-score	330	0.78	1.04
Age 2 IQ z-score	322	-0.04	1.36
Age 3 IQ z-score	328	-0.68	1.32
Age 5 IQ z-score	295	-0.43	1.17
Age 8 IQ z-score	311	-0.38	1.16
Age 8 reading achvmt.	308	0.02	1.36
Age 8 math achvmt.	312	-0.03	1.41
White/other	362	0.40	
African-American	362	0.48	
Hispanic	362	0.12	
Mother without any college	362	0.67	
Mother with any college	362	0.33	
Income/needs ratio at 12 months	325	1.86	1.88
Income/needs < 1.8 indicator	325	0.66	

Concerned if treatment effects differ by birth weight?

Treatment effects bigger for those closer to normal birth weight: age-1 IQ

Same for age-2 IQ

Same for age-3 IQ

Same for age-5 IQ

Same for age-8 IQ

Same for age-8 reading achievement

Same for age-8 math achievement

Re-weight HLBW to match ECLS-B

In each sample, find the proportion of cases with each combination of maternal:

- Lower-income (2): below 180% poverty or not
- Race/Ethnicity (3)
- Martial status (2)
- Education (2)

Weight each IHDP HLBW observation by the ratio of ECLS:IHDP proportions.

Measuring lower-income status (L)

Family income measured at 12 months for 325 of 362 in IHDP. Missing for 37.

Multiply impute missing *L* on the basis of preassignment characteristics:

maternal age, race, education, number of living children, and previous number of LBW, premature children at time of study child's birth; study child's weight, gestational age, neonatal health index, and parity order at birth; and study site indicators.

Number of replicates	0	1	2	3	4	5	6	7	8	9	10	Total
imputed low-income, of 10												
Frequency	0	1	0	0	2	2	3	6	3	11	9	37

IHDP HLBW Sample by Matched Maternal Demographics

Family income	Ethnicity	N	Maternal Marital Status & Education						
		Ma	arried	Unmarried					
		No college	Any college	No college	Any college				
Low income	White/other	0.066	0.025	0.044	0.011				
	African-Am.	0.052	0.030	0.251	0.033				
	Hispanic	0.022	0.006		0.052				
Not low-inc.	White/other	0.036	0.160	0.014	0.008				
	African-Am.	0.019	0.017	0.019	0.011				
	Hispanic	0.006	0.008	0.006					
Income Missing	White/other	0.014	-	0.022	0.003				
	African-Am.	0.006	0.003	0.033	0.006				
	Hispanic	0.003	-		0.014				

ECLS:IHDP ratios

Family income	Ethnicity	Maternal Marital Status & Education					
		Mar	ried	Unmarried			
		No	Any	No college	Any college		
		college	college				
Low income	White/other	0.92	2.14	1.17	1.99		
		(0.02)		(0.06)	(0.22)		
	African-Am.	0.18	0.28	0.22	0.43		
		(0.00)	(0.01)	(0.00)	(0.02)		
	Hispanic	2.48	3.32		1.21		
		(0.09)		(0.18)		
Not low-inc.	White/other	1.66	1.94	1.16	2.21		
		(0.08)		(0.16)	(0.32)		
	African-Am.	0.25	0.96	0.25	0.81		
		(0.00)	(0.07)	(0.02)	(0.11)		
	Hispanic	3.09	3.69		3.58		
		(0.39)		(0.88)		

Summary outcome statistics for the weighted IHDP

IHDP HLBW Sample:		All Unweighted			
Variable	Ν	Mean	SD		
Age 1 IQ z-score	330	0.78	1.04		
Age 2 IQ z-score	322	-0.04	1.36		
Age 3 IQ z-score	328	-0.68	1.32		
Age 5 IQ z-score	295	-0.43	1.17		
Age 8 IQ z-score	311	-0.38	1.16		
Age 8 reading achvmt.	308	0.02	1.36		
Age 8 math achvmt.	312	-0.03	1.41		

Summary outcome statistics for the weighted IHDP

IHDP HLBW Sample:		A Unwei	ll ighted	All ECLS-B weight		
Variable	Ν	Mean	SD	Mean	SD	
Age 1 IQ z-score	330	0.78	1.04	0.88	1.01	
Age 2 IQ z-score	322	-0.04	1.36	0.23	1.42	
Age 3 IQ z-score	328	-0.68	1.32	-0.29	1.44	
Age 5 IQ z-score	295	-0.43	1.17	0.03	1.18	
Age 8 IQ z-score	311	-0.38	1.16	0.09	1.16	
Age 8 reading achvmt.	308	0.02	1.36	0.42	1.36	
Age 8 math achvmt.	312	-0.03	1.41	0.27	1.40	

Summary outcome statistics for the weighted IHDP

IHDP HLBW Sample:		All Unweighted		A ECLS-B ۱	All ECLS-B weights		Control only ECLS-B weights	
Variable	Ν	Mean	SD	Mean	SD	Mean	SD	
Age 1 IQ z-score	330	0.78	1.04	0.88	1.01	0.86	0.99	
Age 2 IQ z-score	322	-0.04	1.36	0.23	1.42	-0.03	1.39	
Age 3 IQ z-score	328	-0.68	1.32	-0.29	1.44	-0.60	1.42	
Age 5 IQ z-score	295	-0.43	1.17	0.03	1.18	-0.03	1.09	
Age 8 IQ z-score	311	-0.38	1.16	0.09	1.16	0.04	1.11	
Age 8 reading achvmt.	308	0.02	1.36	0.42	1.36	0.46	1.35	
Age 8 math achvmt.	312	-0.03	1.41	0.27	1.40	0.25	1.38	

IQ effects larger for low-income

Outcome		А	В	С
Age 5 IQ	Treatment	0.102	0.148	-0.264
(n=295)		(0.116)	(0.166)	(0.201)
	Low income		-0.509*	-0.820***
			(0.246)	(0.231)
	Treatment x			0.861***
	(Low income)			(0.201)
Age 8 IQ	Treatment	0.156	0.224	-0.067
(n=311)		(0.158)	(0.169)	(0.323)
	Low income		-0.595**	-0.806***
			(0.185)	(0.196)
	Treatment x			0.572
	(Low income)			(0.361)

Coefficient (within site correlation corrected SE). Significance: *0.10 **0.05 ***0.01.

All models also condition on child gender, birth weight, gestational age at birth, neonatal health index and site indicators. IHDP HLBW sample with ECLS-B weights.

Percent of Cognitive and Achievement Gaps Closed by Universal and Targeted IHDP, by Age of Child

Conclusions

• Targeted program

 Evidence that large, persistent reductions in cognitive and achievement gap can be achieved.

- Universal program
 - No evidence of persistent benefit to higherincome children.
 - Could be because control-group parents already choose high-quality alternatives.

IQ effects larger for lower-income

Outcome		А	В	С
Age 1 IQ	Treatment	0.109	0.112	0.065
(n=330)		(0.132)	(0.133)	(0.177)
	Low income		-0.037	-0.072
			(0.122)	(0.171)
	Treatment x			0.097
	(Low income)			(0.253)
Age 2 IQ	Treatment	0.793***	0.878***	0.433*
(n=322)		(0.160)	(0.223)	(0.219)
	Low income		-0.875***	-1.181***
			(0.244)	(0.270)
	Treatment x			0.872**
	(Low income)			(0.280)
Age 3 IQ	Treatment	0.903***	1.001***	0.323
(n=328)		(0.147)	(0.181)	(0.210)
	Low income		-1.017***	-1.482***
			(0.192)	(0.240)
	Treatment x			1.319***
	(Low income)			(0.308)

Coefficient (within site correlation corrected SE). Significance: *0.10 **0.05 ***0.01.

All models also condition on child gender, birth weight, gestational age at birth, neonatal health index and site indicators. IHDP HLBW sample with ECLS-B weights.

Age-8 achievement effects also larger for low-income

Outcome		А	В	С
Reading	Treatment	-0.116	-0.041	-0.456
(n=308)		(0.209)	(0.261)	(0.267)
	Low income		-0.643***	-0.936***
			(0.156)	(0.123)
	Treatment x			0.804***
	(Low income)			(0.184)
Math	Treatment	0.120	0.187	-0.137
(n=312)		(0.149)	(0.206)	(0.197)
	Low income		-0.594*	-0.830**
			(0.257)	(0.281)
	Treatment x			0.636**
	(Low Income)			(0.224)

Coefficient (within site correlation corrected SE). Significance: *0.10 **0.05 ***0.01.

All models also condition on child gender, birth weight, gestational age at birth, neonatal health index and site indicators. IHDP HLBW sample with ECLS-B weights.

Gap closing estimates

Age and	High-low income gap		Treatment	Treatment*	% Gap closed	% Gap closed
outcomes			effect for	Low-income	from universal	from targeted
			higher-income	interaction	program	program
	IHDP mean				,	
	difference	α_1	α ₂	α ₃	α_3/α_1	$(\alpha_2 + \alpha_3)/\alpha_1$
IQ at 12 months	0.24*	0.01	0.11	0.04	159	999
	(0.14)	(0.18)	(0.18)	(0.25)	(100545)	(182168)
IQ at age 2	1.35***	1.09**	0.46*	0.82**	74.8**	117.2***
	(0.18)	(0.28)	(0.23)	(0.30)	(22.2)	(20.8)
IQ at age 3	1.76***	1.42***	0.34	1.28***	89.4***	113.4***
	(0.17)	(0.24)	(0.21)	(0.31)	(15.2)	(8.4)
IQ at age 5,	1.08***	0.76**	-0.22	0.77**	101.2*	71.8***
Kindergarten	(0.14)	(0.21)	(0.22)	(0.22)	(43.7)	(15.8)
IQ at age 8,	1.03***	0.77***	-0.08	0.52	67.1	56.7**
grade 3	(0.15)	(0.17)	(0.29)	(0.34)	(40.9)	(15.9)
Reading at age 8,	1.08***	0.82***	-0.44	0.74**	89.7*	36.6
grade 3	(0.18)	(0.13)	(0.27)	(0.23)	(37.4)	(28.6)
Math at age 8,	0.96***	0.76**	-0.20	0.64**	83.6**	56.8**
grade 3	(0.19)	(0.24)	(0.19)	(0.22)	(30.6)	(18.6)