Preschool developmental dynamics: Evidence from the Infant Health and Development Program

Aaron Sojourner

joint with Jeanne Brooks-Gunn, Flavio Cunha, Greg Duncan, James Heckman & Pamela Klebanov

> University of Minnesota Carlson School of Management

> > October 20, 2009

Development dynamics: IHDP evidence

Introduction

Data

Model and Hypotheses

Evidence

Wrap-up

Sac

Best mix of earlier and later investment?

"There is no question that enriched inputs can lead to enhanced learning, at least on a short-term basis.... However, it is not clear what the longer-term implications of such inputs are, nor which skills are being transmitted. It is also not clear that early learning is any more efficient, enduring, or effective than later learning."

— Shonkoff et al (2000), *Neurons to Neighborhoods*, NAS/NRC

Development dynamics: IHDP evidence

Introduction

Overview Timing of investments

Data

Model and Hypotheses

Evidence

- Questions:
 - Given a fixed budget, what's the best way to spread investment across preschool ages?
 - How does the level of early (before 3) investment change the impact of later (3-5) investment?
 - What explains consistent pattern of large cognitive treatment effects and (partial) fade-out? (Karoly et al, 1998; Waldfogel, 2002; Ryan et al, 2006)
- Conclusions:
 - Depreciation of investments explains much of fade-out.
 - Masks moderate complementarity of early for late investments.
 - Best to balance investments over ages to some extent.

Development dynamics: IHDP evidence

Introduction Overview Timing of investments

Data

Model and Hypotheses

Evidence

Ideal experiment to separate effect of level from effect of timing

	Level of investment				
Treatment	Early	Late			
Front loaded	1	0			
Back loaded	0	1			
Balanced	α	$(1 - \alpha)$			
Control	0	0			

Which path of investment would produce the biggest effects on outcomes? Effects compared to control?

Development dynamics: IHDP evidence

Introduction Overview Timing of investments

Data

Model and Hypotheses

Evidence

How is this study different than all other studies?

- Experiments have not separated timing of investment from level. Compare control to
 - Front-loaded: Early Head Start, IHDP
 - Back-loaded: Head Start, Perry, Chicago CPC
 - Balanced: Abecedarian
- Model with observational data can study timing but worry about causal inference.
- IHDP has randomly-assigned early investment, well-measured (but endogenous) late investment, and good long-term outcomes.

Development dynamics: IHDP evidence

Introduction Overview Timing of investments

Data

Model and Hypotheses

Evidence

• More is better than less but, given any fixed amount, the best balance between early and late depends on:

Development dynamics: IHDP evidence

Introduction Overview Timing of investments

Data

Model and Hypotheses

Evidence

- More is better than less but, given any fixed amount, the best balance between early and late depends on:
 - comparison of the direct effects of early versus late investment on outcomes, and

- 日本 - 「日本 - 日本 - 日本 - 日本

Development dynamics: IHDP evidence

Introduction Overview Timing of investments

Data

Model and Hypotheses

Evidence

- More is better than less but, given any fixed amount, the best balance between early and late depends on:
 - comparison of the direct effects of early versus late investment on outcomes, and

- 日本 - 1 日本 - 日本 - 日本 - 日本

• indirect effect of early through changing the productivity of later investments.

Development dynamics: IHDP evidence

Introduction Overview Timing of investments

Data

Model and Hypotheses

Evidence

- More is better than less but, given any fixed amount, the best balance between early and late depends on:
 - comparison of the direct effects of early versus late investment on outcomes, and
 - indirect effect of early through changing the productivity of later investments.
- How do higher levels of early investment affect the productivity of later investment?

Development dynamics: IHDP evidence

Introduction Overview Timing of investments

Data

Model and Hypotheses

Evidence

- More is better than less but, given any fixed amount, the best balance between early and late depends on:
 - comparison of the direct effects of early versus late investment on outcomes, and
 - indirect effect of early through changing the productivity of later investments.
- How do higher levels of early investment affect the productivity of later investment?
 - Raise productivity: "skill-begets-skill." Positive interaction.

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ う へ つ ・

Development dynamics: IHDP evidence

Introduction Overview Timing of investments

Data

Model and Hypotheses

Evidence

- More is better than less but, given any fixed amount, the best balance between early and late depends on:
 - comparison of the direct effects of early versus late investment on outcomes, and
 - indirect effect of early through changing the productivity of later investments.
- How do higher levels of early investment affect the productivity of later investment?
 - Raise productivity: "skill-begets-skill." Positive interaction.
 - No productivity effect: Zero interaction.

Development dynamics: IHDP evidence

Introduction Overview Timing of investments

Data

Model and Hypotheses

Evidence

- More is better than less but, given any fixed amount, the best balance between early and late depends on:
 - comparison of the direct effects of early versus late investment on outcomes, and
 - indirect effect of early through changing the productivity of later investments.
- How do higher levels of early investment affect the productivity of later investment?
 - Raise productivity: "skill-begets-skill." Positive interaction.
 - No productivity effect: Zero interaction.
 - Lower productivity: diminishing-returns. Negative interaction.

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ う へ つ ・

Development dynamics: IHDP evidence

Introduction Overview Timing of investments

Data

Model and Hypotheses

Evidence

Prospective random sample from

• Research hospitals in 8 cities

Development dynamics: IHDP evidence

Introduction

Data IHDP Sample IHDP treatment Summary Stats Large gains and "fade-out"

Model and Hypotheses

Evidence

Wrap-up

・ロト・日本・山田・三田・シック・

Prospective random sample from

- Research hospitals in 8 cities
- Enrolled 985 families delivering babies
 - Low birth weight: \leq 2500 grams
 - Premature: \leq 37 weeks

Development dynamics: IHDP evidence

Introduction

Data IHDP Sample IHDP treatment Summary Stats Large gains and "fade-out"

Vlodel and Hypotheses

Evidence

Wrap-up

・ロト ・西ト ・田ト ・田ト ・日・ シュマ

Prospective random sample from

- Research hospitals in 8 cities
- Enrolled 985 families delivering babies
 - Low birth weight: \leq 2500 grams
 - Premature: \leq 37 weeks
- We focus on the higher birth weight (2001 2500 g) HLBW subsample, N = 362.

Development dynamics: IHDP evidence

Introduction

Jata IHDP Sample IHDP treatment Summary Stats Large gains and "fade-out"

Vlodel and Hypotheses

Evidence

Prospective random sample from

- Research hospitals in 8 cities
- Enrolled 985 families delivering babies
 - Low birth weight: \leq 2500 grams
 - Premature: \leq 37 weeks
- We focus on the higher birth weight (2001 2500 g) HLBW subsample, N = 362.
- Everyone got pediatric care from birth to age 3, feedback from battery of intensive testing, and referrals to social services

Development dynamics: IHDP evidence

ntroduction

Jata IHDP Sample IHDP treatment Summary Stats Large gains and "fade-out"

Vlodel and Hypotheses

Evidence

IHDP experimental treatment

Age 0 to 1

- Weekly home visits from clinically-trained staff to
 - develop parenting skills and child development knowledge
 - monitor and defuse issues and help family cope

- 日本 - 1 日本 - 日本 - 日本 - 日本

Introduction

Data IHDP Sample IHDP treatment Summary Stats Large gains and "fade-out"

Model and Hypotheses

Evidence

IHDP experimental treatment

Age 0 to 1

- Weekly home visits from clinically-trained staff to
 - develop parenting skills and child development knowledge
 - monitor and defuse issues and help family cope

Age 1 to 3

- Home visits bimonthly
- Childcare available
 - high-quality
 - full-day
 - free and free transportation

Development dynamics: IHDP evidence

Introduction

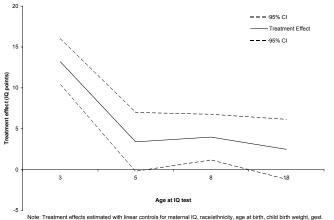
Data IHDP Sample IHDP treatment Summary Stats Large gains and "fade-out"

Model and Hypotheses

Evidence

Variable	Mean	Std. Dev.	Obs. of 362	eta_{Tr}
Age-1 IQ (θ_1)	111.6	15.5	330	2.5
Age-3 IQ (θ_3)	89.8	19.9	328	14.2***
Age-5 IQ (θ_5)	93.5	17.6	295	3.6**
Age-1 Home env. (H_1)	0.1	1.0	322	0.0
Age-3 Home env. (H_3)	0.0	1.0	298	0.4***
1(Treatment) (<i>Tr</i>)	0.39		362	
$\begin{array}{l} \textit{Maternal} \\ \textit{Maternal IQ} \; (\theta^c_M) \\ 1(\textit{Ed} < \textit{High Sch Grad.}) \\ 1(\textit{Ed} = \textit{HS grad}) \\ 1(\textit{Ed} = \textit{Some Coll}) \\ 1(\textit{Ed} = \textit{Coll Grad}) \end{array}$	82.7 0.41 0.26 0.19 0.14	21.1	316 362 362 362 362 362	1.1 0.12** 0.02 -0.12*** -0.02
	-		362 362	
1(Black) 1(Hispanie)	0.48		362 362	-0.04
1(Hispanic) Age at child's birth	0.12 24.7	6.1	362	-0.02 -0.9

Development dynamics: IHDP evidence


Introduction

Data IHDP Sample IHDP treatment Summary Stats Large gains and "fade-out"

Model and Hypotheses

Evidence

Effect of IHDP's age 0-3 investments on cognitive skills from age 3 to 18

age, neonatal health index, and site and within-site-corrected standard errors. HLBW is birthweight 2001-2500 g.

Development dynamics: IHDP evidence

Introduction

Data IHDP Sample IHDP treatment Summary Stats Large gains and "fade-out"

Vodel and Typotheses

Evidence

Wrap-up

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

What happened?

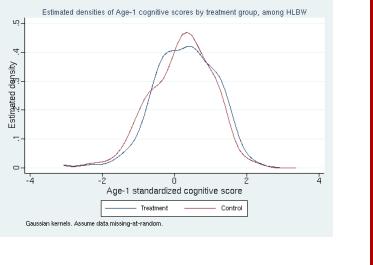
What developmental process underlies this pattern?

Development dynamics: IHDP evidence

Introduction

Dat

IHDP Sample IHDP treatment Summary Stats Large gains and "fade-out"


Model and Hypotheses

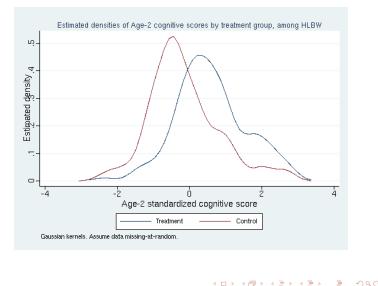
Evidence

Wrap-up

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲□ ● ● ● ●

Age 1 IQ distributions by treatment group after a year of weekly home visits

Development dynamics: IHDP evidence


ntroduction

Data IHDP Sample IHDP treatment Summary Stats Large gains and "fade-out"

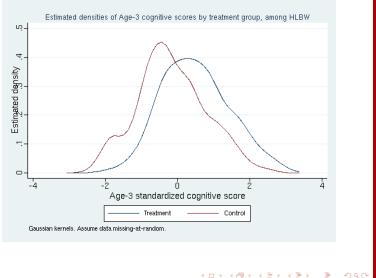
Model and Hypotheses

Evidence

Age 2 IQ distributions by treatment group after a year of free high-quality childcare

Development dynamics: IHDP evidence

ntroduction


Data

IHDP Sample IHDP treatment Summary Stats Large gains and "fade-out"

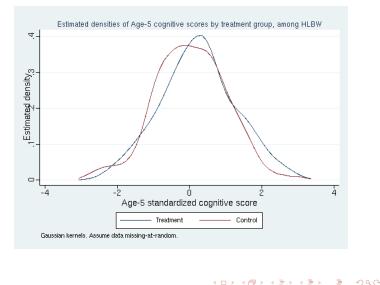
Nodel and Typotheses

Evidence

Age 3 IQ distributions by treatment group after 2 years of childcare

Development dynamics: IHDP evidence

ntroduction


Data

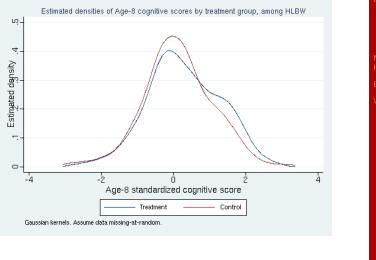
IHDP Sample IHDP treatment Summary Stats Large gains and "fade-out"

Model and Hypotheses

Evidence

Age 5 IQ distributions by treatment group at school-entry, 2 years after treatment ends

Development dynamics: IHDP evidence


ntroduction

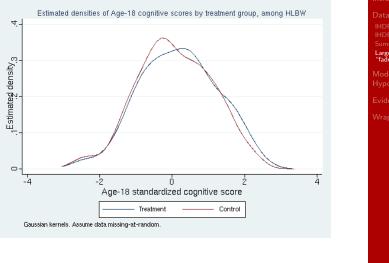
Data IHDP Sample IHDP treatment Summary Stats Large gains and "fade-out"

Model and Hypotheses

Evidence

Age 8 IQ distributions by treatment group 5 years after treatment ends

Development dynamics: IHDP evidence


ntroduction

IHDP Sample IHDP treatment Summary Stats Large gains and "fade-out"

Model and Hypotheses

Evidence

Age 18 IQ distributions by treatment group

Development dynamics: IHDP evidence

Large gains and "fade-out"

• θ_a : age-*a* IQ

Development dynamics: IHDP evidence

Introduction

Dat

Model and Hypotheses Variables Fade-out hypotheses

Evidence

Wrap-up

• θ_a : age-*a* IQ

- *l_a*: time-varying investments, e.g. quality of childcare, home environment, maternal interactions
 - *I*₁: **early** investment (treatment, Age-1 HOME)
 - *I*₃: **late** investment (HOME and parenting skills measured age 3-5)

Development dynamics: IHDP evidence

Introduction

Dat

Model and Hypotheses **Variables** Fade-out hypotheses

Evidence

• θ_a : age-*a* IQ

- *l_a*: time-varying investments, e.g. quality of childcare, home environment, maternal interactions
 - *I*₁: early investment (treatment, Age-1 HOME)
 - *I*₃: **late** investment (HOME and parenting skills measured age 3-5)
- X: fixed characteristics (birth weight, maternal IQ...)

- 日本 - 1 日本 - 日本 - 日本 - 日本

Development dynamics: IHDP evidence

Introduction

Dat

Model and Hypotheses **Variables** Fade-out hypotheses

Evidence

• θ_a : age-*a* IQ

- *l_a*: time-varying investments, e.g. quality of childcare, home environment, maternal interactions
 - *I*₁: early investment (treatment, Age-1 HOME)
 - *I*₃: **late** investment (HOME and parenting skills measured age 3-5)
- X: fixed characteristics (birth weight, maternal IQ...)

• ϵ_a : unobserved influences on IQ

Development dynamics: IHDP evidence

Introduction

Dat

Model and Hypotheses **Variables** Fade-out hypotheses

Evidence

$$\begin{aligned} \theta_3 &= \alpha_0 + \alpha_{l_1} I_1 + \alpha_X X + \epsilon_1 \\ \theta_5 &= \beta_0 + \beta_{l_1} I_1 + \beta_{l_3} I_3 + \beta_{l_1 l_3} I_1 I_3 + \beta_X X + \epsilon_3 \end{aligned}$$

• Compensation. $\bar{l}_3^C > \bar{l}_3^T$ compensates for $\bar{l}_1^C < \bar{l}_1^T$.

(日)

Development dynamics: IHDP evidence

Introduction

Data

Model and Hypotheses Variables Fade-out hypotheses

Evidence

$$\begin{aligned} \theta_3 &= \alpha_0 + \alpha_{I_1} I_1 + \alpha_X X + \epsilon_1 \\ \theta_5 &= \beta_0 + \beta_{I_1} I_1 + \beta_{I_3} I_3 + \beta_{I_1 I_3} I_1 I_3 + \beta_X X + \epsilon_3 \end{aligned}$$

• Compensation. $\overline{l}_3^C > \overline{l}_3^T$ compensates for $\overline{l}_1^C < \overline{l}_1^T$.

Diminishing-returns: β_{l1l3} < 0. Late investment more productive for controls due to less early investment.

Development dynamics: IHDP evidence

Introduction

Data

Model and Hypotheses Variables Fade-out hypotheses

Evidence

$$\begin{aligned} \theta_3 &= \alpha_0 + \alpha_{I_1} I_1 + \alpha_X X + \epsilon_1 \\ \theta_5 &= \beta_0 + \beta_{I_1} I_1 + \beta_{I_3} I_3 + \beta_{I_1 I_3} I_1 I_3 + \beta_X X + \epsilon_3 \end{aligned}$$

• Compensation. $\bar{l}_3^C > \bar{l}_3^T$ compensates for $\bar{l}_1^C < \bar{l}_1^T$.

- Diminishing-returns: β_{l1l3} < 0. Late investment more productive for controls due to less early investment.
- Depreciation: $\alpha_{I_1} >> \beta_{I_1}$. Early investment matters less for age-5 than age-3 IQ.

Development dynamics: IHDP evidence

Introduction

Data

Model and Hypotheses Variables Fade-out hypotheses

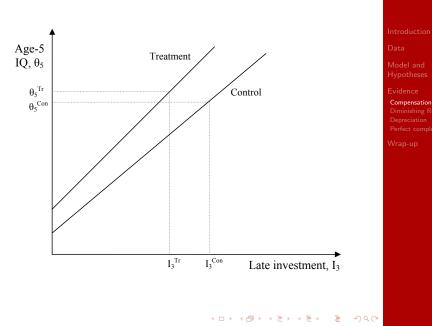
Evidence

$$\begin{aligned} \theta_3 &= \alpha_0 + \alpha_{I_1} I_1 + \alpha_X X + \epsilon_1 \\ \theta_5 &= \beta_0 + \beta_{I_1} I_1 + \beta_{I_3} I_3 + \beta_{I_1 I_3} I_1 I_3 + \beta_X X + \epsilon_3 \end{aligned}$$

• Compensation. $\overline{l}_3^C > \overline{l}_3^T$ compensates for $\overline{l}_1^C < \overline{l}_1^T$.

- Diminishing-returns: β_{l1l3} < 0. Late investment more productive for controls due to less early investment.
- Depreciation: $\alpha_{I_1} >> \beta_{I_1}$. Early investment matters less for age-5 than age-3 IQ.
- Perfect-complements: θ₅ = min{I₁, I₃} + ε₃. Failure to follow high early with high late causes fade-out.

Development dynamics: IHDP evidence


Introduction

Data

Model and Hypotheses Variables Fade-out hypotheses

Evidence

Compensation, $I_3^T < I_3^C$

Development dynamics: IHDP evidence

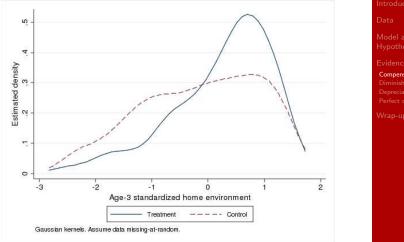
Compensation, $I_3^T < I_3^C$

Most "late" factors look equal between groups

- All fixed (observables and unobservables) of kids and families are balanced across groups by initial randomization
- Most observable time-varying characteristics look similar too
 - Maternal fertility: pregnancies, births, abortions, miscarriages
 - Changes in family structure
 - Maternal child development knowledge (KIDI) and beliefs (CODQ)
- Any differences (parenting quality and home environment) tends to favor treatment group

Development dynamics: IHDP evidence

Introduction


Dat

Model and Hypotheses

Evidence

Compensation Diminishing Returns Depreciation Perfect complements

Compensation, $I_3^T < I_3^C$

Development dynamics: IHDP evidence

Compensation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Compensation, $I_3^T < I_3^C$

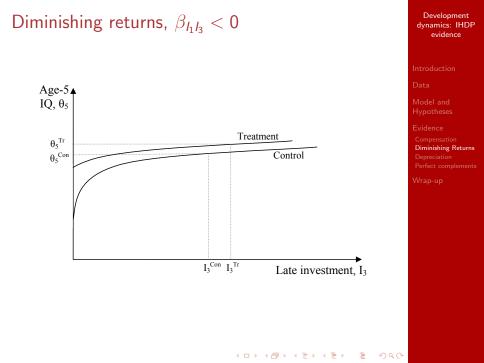
Variable, X	λ _{Con}	$\bar{X}_{Tr} - \bar{X}_{Con}$	β_{Tr}					
Age-3 home environment								
1(child's toys teach color, size, shape)	0.52	0.19***						
1(child has at least 3 puzzles)	0.34	0.12**						
1(child has record player and 5 records)	0.28	-0.04						
1(child's toys permit free expression)	0.59	0.13**						
1(child's toys require refined movements)	0.53	0.07						
1(child's toys teach numbers)	0.59	0.02						
1(child encouraged to learn shapes)	0.53	0.27***						
1(child's toys teach names of animals)	0.88	0.03						
1(child encouraged to learn colors)	0.76	0.14***						
1(child encouraged learn patterned speech)	0.86	0.00						
1(child encouraged learn spatial relations)	0.74	0.08*						
1(child encouraged to learn numbers)	0.87	0.06*						
1(child encouraged to learn to read)	0.26	0.09						
1(child has musical instrument)	0.65	0.00						
Standardized first factor (H ₃)	-0.13	0.38***	0.43***					
Age-5 home envi	ronment							
I(3 or more TVs in house)	0.48	-0.12**						
I(Dictionary in house)	0.95	-0.08***						
I(Bought > 12 books for child in prev. year)	0.44	0.04						
Freq. 8 types of adult-child actvts.	4.6	0.19***						
Home Literacy index	2.0	0.02						

Significance levels: *: 10%, **: 5%, ***: 1%.

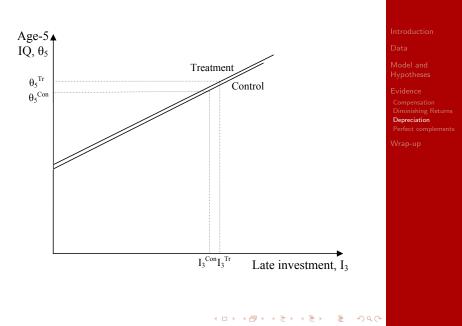
Development dynamics: IHDP evidence

Introduction

Data


Model and Hypotheses

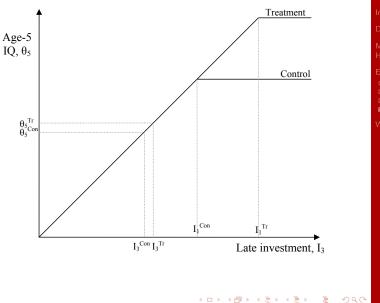
Evidence


Compensation Diminishing Returns Depreciation Perfect complements

Wrap-up

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ ○ ○

Depreciation $\alpha_{l_1} >> \beta_{l_1}$


Development dynamics: IHDP evidence

Dependent variable	Age-3 IQ z-score (θ_3^c)	Age-5 IQ z-score (θ_5^c)	Development dynamics: IHDP
I(Treatment) (<i>Tr</i>)	0.93*** (0.12)	0.03 (0.11)	evidence
Age-3 Home env. (H_3)		0.18*** (0.06)	Introduction
H ₃ · Tr		0.18^{*} (0.11)	Data
Maternal IQ (θ^c_M)	0.09 (0.06)	0.13** (0.05)	Model and Hypotheses
I(MatEd < HS)	-0.14 (0.15)	-0.10 (0.13)	Evidence Compensation Diminishing Returns
I(MatEd = Some Coll)	0.59*** (0.18)	0.66*** (0.16)	Depreciation Perfect complements
${\sf I}({\sf MatEd}={\sf Coll}\;{\sf Grad})$	1.13^{***} (0.24)	0.70*** (0.21)	Wrap-up
I(Male)	-0.27** (0.12)	-0.19* (0.10)	
l(Black)	-0.58*** (0.17)	-0.50*** (0.15)	
I(Hispanic)	-0.97*** (0.26)	-0.66*** (0.23)	
Adj. R ²	0.54	0.53	
N	254	254	

Specifications also include a constant, birth weight, gestational age at birth, maternal age at birth, neonatal health index and site dummies.

・ロト・日本・日本・日本・日本・日本

Perfect complements, $\theta_5^c = \min\{I_1, I_3\}$

Development dynamics: IHDP evidence

Introduction

Data

Model and Hypotheses

Compensation Diminishing Returns Depreciation Perfect complements

Constant Elasticity of Substitution production

$$heta_5=eta[\Psi(heta_3)^
u+(1-\Psi)(extsf{I}_3)^
u]^{rac{
u}{
u}}\epsilon_3$$

- Perfect-complements ⇔ (ν = −∞).
 95% confidence intervals of ν̂ above -2.5.
- Diminishing-returns ⇔ (ρ − ν < 0). Estimates usually positive. Never significantly different than zero.

Development dynamics: IHDP evidence

Introduction

Data

Model and Hypotheses

Evidence

Compensation Diminishing Returns Depreciation Perfect complements

Limitations

- Endogenous late investment
 - Instrument late investment with birth order | family size
 - Instrument late investment with birthday
 - Model parental choice
- Generalizability from HLBW sample
- Low power/small sample: bring in CNLSY comparison group
- Include effect of health services using CNLSY kids outside recruitment window

Development dynamics: IHDP evidence

Introduction

Dat

Model and Hypotheses

Evidence

Conclusions

- Strong evidence against two potential explanations of fade-out: compensation and diminishing-returns.
- Weak evidence against perfect complements.
- Low self-productivity of age-3 skills (large depreciation of early investment) drives fade-out.
- May mask moderate complementarity between early and late investment.
- Future: Include other human capital stocks and anchor in more concrete outcomes.

Development dynamics: IHDP evidence

Introduction

Dat

Model and Hypotheses

Evidence

Time-varying measures by age

Development dynamics: IHDP evidence

Introduction

Data

				Hypotheses
Age	Cognitive (θ_{2}^{c})	Noncognitive Attention	Home investment (H _a)	riypotnese
		(θ_a^n)		Evidence
1	age-1 Bayley IQ, mental	Factor from 3 items in	Factor from the 10 age-1 HOME	
	subscale	age-1 Bayley IQ examiner	Learning items	Wrap-up
		rating		
3	age-3 Stanford-Binet IQ, mental subscale	Factor from 8 items in age-3 Stanford-Binet IQ examiner rating	Factor from the 14 age-3 HOME Literacy items	
5	age-5 WPPSI Full scale IQ			

Development dynamics: IHDP evidence

Variable (X)	Mean (\bar{X})	Std. Dev.	Min.	Max.	Obs. of 362	$ar{X}_{Tr} - ar{X}_{Con}$	β_{Tr}
Age-1 IQ (θ_1^c)	111.6	15.5	50	147	330	2.0	2.5
Age-2 IQ	99.4	20.4	50	150	322	14.4***	14.7***
Age-3 IQ (θ_2^c)	89.8	19.9	43	144	328	13.2***	14.2***
Age-5 IQ (θ_{5}^{2})	93.5	17.6	45	144	295	3.5*	3.6**
Age-8 IQ	94.3	17.4	40	147	311	2.9	4.5***
Age-18 IQ	93.3	17.1	50	131	224	1.9	3.1*
Age-1 Attention (θ_1^n)	0.1	0.9	-3.0	2.4	330	0.2**	0.2*
Age-3 Attention (θ_3^{\dagger})	0.0	1	-2.5	1.9	329	0.2	0.2
Age-1 Home env. (H_1)	0.1	1.0	-2.6	1.5	322	-0.0	0.0
Age-3 Home env. (H_3)	0.0	1.0	-2.6	1.4	298	0.4***	0.4***
1(Treatment) (Tr)	0.39				362		
1(Male)	0.52				362	-0.05	
Birth weight	2256	139	2001	2500	362	1.6	
Gest. age at birth	34.9	1.5	30	38	362	0.8	
Neonatal health index	99	15	32	137	362	0.8	
Maternal							
Maternal IQ (θ_M^c)	82.7	21.1	46	144	316	-0.1	1.1
1(Ed < High Sch Grad.)	0.41				362	0.12**	
1(Ed = HS grad)	0.26				362	0.02	
1(Ed = Some Coll)	0.19				362	-0.12***	
1(Ed = Coll Grad)	0.14				362	-0.02	
1(Black)	0.48				362	-0.04	
1 (Hispanic)	0.12				362	-0.02	
Age at child's birth	24.7	6.1	14	42	362	-0.9	

Introduction

Data

Model and Hypotheses

Evidence

Spearman rank correlations

	00	00	00	o <i>n</i>	0.0			
	θ_1^{c}	θ_3^{ϵ}	θ_5^c	θ_1^{n}	θ_3^n	H_1	H ₃	θ_M^c
Age-1 IQ, θ_1^c	1.00							
Age-3 IQ, $\theta_3^{\overline{c}}$	0.38*	1.00						
Age-5 IQ, θ_5^{2}	0.31*	0.72*	1.00					
Age-1 Attention, θ_1^n	0.47*	0.19*	0.18*	1.00				
Age-3 Attention, θ_3^{\hbar}	0.16*	0.43*	0.44*	0.17*	1.00			
Age-1 Home Env., H ₁	0.19*	0.48*	0.55*	0.12*	0.20*	1.00		
Age-3 Home Env., H ₃	0.21*	0.57*	0.61^{*}	0.12*	0.32*	0.58*	1.00	
Maternal IQ, θ_M^c	0.16^{*}	0.46*	0.53*	0.03	0.26*	0.54*	0.47*	1.00
1(Treatment), <i>Tr</i>	0.06	0.32*	0.09	0.11	0.09	-0.00	0.18*	0.00

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

*: significantly different than zero at 5 percent level.

Development dynamics: IHDP evidence

Introduction

Dat

Model and Hypotheses

Evidence